# Expressions¶

This section describes the expression language of Balzac. Expressions are used, for example, in witnesses, in output values, within script definitions (with some limitations), and so on.

## Literals¶

Balzac features classical expression literals such as **strings**, **integers** and **boolean**,
and Bitcoin specific ones like **private keys**, **public keys**, **addresses**, **hashes**, **signatures** and **transactions**.

Literals can be expressed directly in the language and each literal corresponds to a specific type.

### Integers¶

Integers are 64-bit signed numbers, whose type is `int`

.
Integers syntax is Java-like: digits can be separated with `_` to improve readability
and hexadecimal numbers are prefixed with `0x` or `0X`.

```
eval
42,
100_000,
0Xfff,
0xff_ff_ff
```

#### Dates and Delays¶

Balzac provides two different ways to express integers, in order to improve readability
and avoid errors: **dates** and **delays**.

**Dates** are parsed as integers and represent the amount of seconds that have been passed since `1970-01-01T00:00:00`

.
Balzac supports three different datetime format from Java DateTime:

`DateTimeFormatter.ISO_LOCAL_DATE`(e.g.`2018-01-31`)`DateTimeFormatter.ISO_LOCAL_DATE_TIME`(e.g.`2018-01-31T10:30:59`)`DateTimeFormatter.ISO_OFFSET_DATE_TIME`(e.g.`2018-01-31T10:30:59+02:00`)

```
eval
1969-12-31T23:59:59, // -1
1970-01-01T00:00:00, // 0
1970-01-01T00:00:01, // 1
2018-01-01 // 1514764800
```

**Delays** can be expressed in minutes, hours, or days.
The parsing rules are straightforward and conversions are done at parsing time:

`INT (m|min|minute|minutes)`: multiply`INT`by`60``INT (h|hour|hours)`: multiply`INT`by`60 * 60``INT (d|day|days)`: multiply`INT`by`60 * 60 * 24`

```
eval
1m, // 60
1min, // 60
1minute, // 60
2minutes, // 120
1h, // 3600
1hour, // 3600
2hours, // 7200
1d, // 86400
1day, // 86400
2days // 172800
```

### Strings¶

Strings are sequence of characters, whose type is `string`

.
Strings are enclosed by `"` or `'`.

```
eval
'Hello Balzac!',
"Hello world!"
```

### Booleans¶

Booleans consists of two possible values: `true`

and `false`

.
Their type is `boolean`

(or `bool`

for brevity).

### Hashes¶

Hashes are sequences of hexdecimal data, whose type is `hash`

.
Hashes are represented using the prefix `hash:`

followed by the hash in
hexadecimal format. The number of digits is not limited but must be even.

```
eval
hash:00,
hash:73475cb40a568e8da8a045ced110137e159f890ac4da883b6b17dc651b3a8049
```

See Hash Functions for generating an hash value in Balzac.

### Signatures¶

Signatures are sequences of hexadecimal data, whose type is `signature`

.
Signatures are represented using the prefix `sig:`

followed by the raw data in
hexadecimal format. The number of digits is not limited but must be even.

```
eval
sig:3045022100ca9d6c44745a5b0ee3a1868d55c59bf691826f670dddd8717da828685b...
```

See Cryptographic Functions for generating a signature value in Balzac.

### Private keys¶

Private keys are represented in the Wallet Import Format (WIF) [1].
Their type is `key`

and can be expressed using the prefix `key:`

followed by the WIF.

Note that WIF encodes the network identifier, so the same private key has a different WIF representation in the mainnet and in the testnet.

The sidebar of the online editor allows to create new random keys (generated server side).

```
eval
// testnet
key:cVj2a2fp4rkykykQR65Bf9FKj7gzjY2QFyn7Kj5BwSmZvn2VQ8To,
// mainnet (same key)
key:L5N377fxdo4ibYH92gG4HpkG6tPb55viBwdeDJcgSL7Zg33XmKuL
```

### Public keys¶

Public keys are sequences of hexadecimal data, whose type is `pubkey`

.
Public keys are represented using the prefix `pubkey:`

followed by the raw data in
hexadecimal format. The number of digits is not limited but must be even.

The sidebar of the online editor allows to create new random keys (generated server side).

```
eval
pubkey:027b62af31b2114f960327aa258503a86aad0615618de7a6a1ad9fbb08e5fe7fff
```

### Addresses¶

Addresses are represented in the Wallet Import Format (WIF) [1].
Addresses are obtained from hashing the public key and encoded in WIF.
Their type is `address`

and can be expressed using the prefix `address:`

followed by the WIF.

As for private keys, WIF encodes the network identifier, so the same address has a different WIF representation in the mainnet and in the testnet.

The sidebar of the online editor allows to create new random addresses (generated server side).

```
eval
// testnet
address:muRL5JJcupSkeXfJun4A4AubnPVZgSmr5q,
// mainnet (same address)
address:1EuNnFDe6o1VsRBhCD5nEFhGvPtrmm4dPH
```

### Transactions¶

Transactions can be expressed using the prefix `tx:`

followed by the serialized
transaction data in hexadecimal format. Transactions have type `transaction`

.

Balzac features new transaction creation, as explained in section Transactions.

```
tx:0200000002a04eb44f83160d5589c6053852fc9e2b88dd27f97422cc869d0c92e9444...
```

## Boolean operations¶

Balzac supports classical boolean operator such as **and**, **or** and **not**.
The syntax is Java-like: `&&`, `||` and `!` respectively for and/or/not operation.

The precedence is: `!` > `&&` > `||`.

The type for a boolean operation is `bool`

and the type system ensures that
both the operands are of that type.

```
eval
a == 5 && (b == "balzac" || b == "Balzac")
```

## Arithmetic operations¶

Balzac supports classical arithmetic operator such as **equality**, **addition**, **multiplication** and so on.
The syntax is Java-like:

`a == b`:*true*if`a`and`b`are equals,*false*otherwise;`a`and`b`must have the same type`a != b`:*true*if`a`and`b`are not equals,*false*otherwise;`a`and`b`must have the same type`a + b`: sum`a`and`b`; both must be`int`

`a - b`: subtract`b`from`a`; both must be`int`

`a < b`:*true*if`a`is less than`b`,*false*otherwise (similarly for`<=`,`>`,`>=`); both must be`int`

`a * b`: multiply`a`from`b`; both must be`int`

`a / b`: divide`a`by`b`(truncate); both must be`int`

`-a`: negate`a`; it must be`int`

The precedence is: `- (unary)` > `*` `/` > `+` `-` > `==` `!=` > `<` `>` `<=` `>=`.

```
eval
a + 42 / 2,
a + b > c - 1
```

## BTC¶

The expression `e BTC`

, where `e` has type `int`

, multiply `e` by `10^8`.
The return type is `int`

.

Optionally, `e` can be followed by a decimal part `. INT`, where `INT` is a max 8-digit number (not an expression).

```
eval
1 BTC, // 100_000_000
(1+1) BTC, // 200_000_000
(1+1).3 BTC, // 230_000_000
(1+1).00003 BTC // 200_003_000
```

## References¶

References allows to refer to a constant declaration or a transaction declaration (Editor syntax), or a script parameter or a transaction parameter (TODO: link).

The type of a reference depends on the referred object.

A transaction reference has always type `transaction`

,
while a constant reference has the same type of the declared constant expression.
A parameter reference has the same type of the parameter it refers to.

```
const zero = 0 // 'zero' has type int
const one = zero + 1
const str = zero + "hello" // type error
transaction T {...} // 'T' has type transaction
const T1 = T // also 'T1'
eval
T == T1
```

Transaction declarations can specify some formal parameters that must be
provided when referencing to the transaction.
References with actual parameters can be specified as `refname(exp1,...,expN)`
and the type of the actual parameters must match the formal one.

```
transaction T(a:int, s:signature) {...}
const s = sig:...
eval
T(42, s)
```

### This¶

The keyword `this`

can be used to refer the current transaction from
the inside.

See Transaction Operations for concrete use.

## Conditional¶

The conditional statement is expressed as `if expIf then expThen else expElse`

.
It is an expression: it evaluates `expThen` if `expIf` evaluates `true`

,
`expThen` otherwise.
Note: the *else* branch cannot be omitted.

The type for conditional `if expIf then expThen else expElse`

is `a'`,
where `bool`

is the type for `expIf` and `a'` is the type of both `expThen` and `expElse`.

```
eval
if 1 == 0 then 4 else 6,
// Error: invalid type string, expected type bool
if "balzac" then 4 else 6,
// Error: invalid type string, expected type int
if 1 == 0 then 4 else "balzac"
```

## Numerical Expressions¶

Balzac features some numerical expressions due to their direct correspondence in the Bitcoin scripting language.

### Max¶

The maximum of two numbers can be expresses as `max(a,b)`

.
This expression has type `int`

and expects that `a` and `b` have type `int`

.

```
eval
max(5,10) == 10
```

### Min¶

The minimum of two numbers can be expresses as `min(a,b)`

.
This expression has type `int`

and expects that `a` and `b` have type `int`

.

```
eval
min(5,10) == 5
```

### Between¶

The expression `between(x,min:max)`

checks a number x is in range `[min,max]`.
This expression has type `bool`

and expects that `x`, `min` and `max` have type `int`

.

```
eval
between(x,5,10),
between(x,5,-10) // invalid range!
```

### Size¶

The `size(n)`

expression returns the size of n in bytes.
This expression has type `int`

and expects that `n` is well typed.

This expression corresponds to `⌈(log2 |n| / 7)⌉`.

## Hash functions¶

Balzac supports the same hashing function of Bitcoin, that are
**sha1**, **sha256**, **ripemd160**, **hash256** and **hash160**.

### Sha1¶

The expression `sha1(exp)`

, where `exp` has type
`int`

, `string`

, `boolean`

or `hash`

, returns a
SHA-1 digest (type `hash`

).

```
eval
sha1(42), // `echo -n -e "\\x2A" | openssl dgst -sha1`
sha1("hello"), // `echo -n "hello" | openssl dgst -sha1`
sha1(true), // `echo -n -e "\\x1" | openssl dgst -sha1`
sha1(false), // `echo -n "" | openssl dgst -sha1`
sha1(false) == sha1("") // true
```

### Sha256¶

The expression `sha256(exp)`

, where `exp` has type
`int`

, `string`

, `boolean`

or `hash`

, returns a
SHA-256 digest (type `hash`

).

```
eval
sha256(42), // `echo -n -e "\\x2A" | openssl dgst -sha256`
sha256("hello"), // `echo -n "hello" | openssl dgst -sha256`
sha256(true), // `echo -n -e "\\x1" | openssl dgst -sha256`
sha256(false), // `echo -n "" | openssl dgst -sha256`
sha256(false) == sha256("") // true
```

### Ripemd160¶

The expression `ripemd160(exp)`

, where `exp` has type
`int`

, `string`

, `boolean`

or `hash`

, returns a
RIPEMD-160 digest (type `hash`

).

```
eval
ripemd160(42), // `echo -n -e "\\x2A" | openssl dgst -ripemd160`
ripemd160("hello"), // `echo -n "hello" | openssl dgst -ripemd160`
ripemd160(true), // `echo -n -e "\\x1" | openssl dgst -ripemd160`
ripemd160(false), // `echo -n "" | openssl dgst -ripemd160`
ripemd160(false) == ripemd160("") // true
```

### Hash256¶

The expression `hash256(exp)`

, where `exp` has type
`int`

, `string`

, `boolean`

or `hash`

, applies
the SHA-256 algorithm twice, returning `hash`

.
It is equivalent to `sha256(sha256(exp))`

.

```
eval
hash256(42), // `echo -n -e "\\x2A" | openssl dgst -sha256 -binary | openssl dgst -sha256`
hash256("hello"), // `echo -n "hello" | openssl dgst -sha256 -binary | openssl dgst -sha256`
hash256(true), // `echo -n -e "\\x1" | openssl dgst -sha256 -binary | openssl dgst -sha256`
hash256(false), // `echo -n "" | openssl dgst -sha256 -binary | openssl dgst -sha256`
hash256(false) == hash256("") // true
```

### Hash160¶

The expression `hash160(exp)`

, where `exp` has type
`int`

, `string`

, `boolean`

or `hash`

, applies
the SHA-256 algorithm followed by RIPEMD-160, returning `hash`

.
It is equivalent to `ripemd160(sha256(exp))`

.

```
eval
hash160(42), // `echo -n -e "\\x2A" | openssl dgst -sha256 -binary | openssl dgst -ripemd160`
hash160("hello"), // `echo -n "hello" | openssl dgst -sha256 -binary | openssl dgst -ripemd160`
hash160(true), // `echo -n -e "\\x1" | openssl dgst -sha256 -binary | openssl dgst -ripemd160`
hash160(false), // `echo -n "" | openssl dgst -sha256 -binary | openssl dgst -ripemd160`
hash160(false) == hash256("") // true
```

## Key Operations¶

Key operations allows to convert private keys in public ones, through `toPubkey`

,
and private/public keys in addresses, through `toAddress`

.

However, consider that Balzac performs type coercion for keys, if possible:
when a public key is required (e.g. `versig`

expression),
it is possible to use a private one; when an address is requires,
both a private key and a public one can be used.

### toPubkey¶

The expression `k.toPubkey`

, where `k` is an expression of type `key`

, returns the public key of `k`.
The return type is `pubkey`

.

```
const k = key:cVj2a2fp4rkykykQR65Bf9FKj7gzjY2QFyn7Kj5BwSmZvn2VQ8To
eval
k.toPubkey
```

### toAddress¶

The expression `k.toAddress`

, where `k` is an expression of type `key`

or `pubkey`

, returns the public key of `k`.
The return type is `address`

.

```
const k = key:cRmmSTUUQvgJMCmC2dFTkY9R8K7g8uzXnkif6E1qopZvjzrg9oeD
const kPub = pubkey:02d2da8344ce030e654aad19ec3ef513a80558a780ba89ca4a3f1588346aad2212
eval
k.toAddress,
kPub.toAddress,
k.toAddress == kPub.toAddress
```

## Cryptographic functions¶

Balzac features cryptographic operations like signing Bitcoin transactions and verify that a given signature is valid against a public key.

### Transaction signature¶

The expression `sig(k) of T`

, where `k` has type `key`

and `T` has type `transaction`

,
generates a new signature. The result type is `signature`

.

```
const kA = key:cVj2a2fp4rkykykQR65Bf9FKj7gzjY2QFyn7Kj5BwSmZvn2VQ8To
transaction TA {
input = _
output = 10 BTC : fun(x) . x == 42
}
transaction T {
input = TA@0 : 42
output = 10 BTC : fun(x) . x == hash:73475cb40a568e8da8a045ced110137e159f890ac4da883b6b17dc651b3a8049
}
eval
sig(kA) of T, // sig:304402203b082cf8987ab8f29d1ccaf7de77a799f1d45c944d6f6fc1474001420e47c8f102203318ad2677b516166d845843fad4e5801a217fe5bb97b680d6a706d99976d15a01
sig(kA) of TA // ERROR: cannot sign a coinbase transaction
```

Error

**Cannot sign coinbase or serialized transactions**

Signatures are commonly used for redeeming an output script,
**which must be part of the signature** in Bitcoin.
So, for a generic `sig(k) of T@n`

, the output script is retrieved from input `n` of `T`.

In the previous example, `sig(kA) of T`

is bound to input `0` and
the output script `TA@0` (i.e. `fun(x) . x == 42`

) is part of the signature.
The expression `sig(kA) of TA`

fails because `TA` is a coinbase,
so there is not connected output script.

#### Modifiers and input index¶

Bitcoin signatures are more complicated: they support different **transaction modifiers**
and are bound to a **specific index**, that is the index of the input in which the signature will
be added.

The more general form is `sig(k)[MODIFIER] of T@INT`

, where `MODIFIER := AIAO|AISO|AINO|SIAO|SISO|SINO`

and `INT` is an integer (note that it is not an expression of type `int`

).
Modifier and input index can be both omitted. If omitted, the modifier is `AIAO`, while the index is `0`.

Each modifier is composed by two parts, `*I` and `*O`, indicating respectively the subset of inputs and of outputs being signed.
The first letter of each part represents all, single, or none. A formal specification can be found in Section 3.3 of [AB+18FC].
The following table shows the correspondence of :langname: modifiers and Bitcoin ones:

Modifier key | Signature Hash Type [BW] |
---|---|

AIAO |
SIGHASH_ALL |

AISO |
SIGHASH_SINGLE |

AINO |
SIGHASH_NONE |

SIAO |
SIGHASH_ALL | SIGHASH_ANYONECANPAY |

SISO |
SIGHASH_SINGLE | SIGHASH_ANYONECANPAY |

SINO |
SIGHASH_NONE | SIGHASH_ANYONECANPAY |

#### Implicit transaction and input index¶

Transaction and index can be omitted in one case. Consider the following examples:

```
transaction T {
input = TA@1 : sig(k) of T
...
}
```

```
transaction T {
input = TA@1 : s
...
}
const s = sig(kA) of T@0
```

Both of the examples below fail due to **cyclic dependency** problems,
since the reference `T` creates a cycle.
Balzac overcomes this problem omitting the transaction `T` to sign,
when the expression is used within a transaction, that is:

```
transaction T {
input = TA@1 : sig(k)
...
}
```

In this case, the transaction and the input index are omitted and automatically
refer to the containing transaction `T` and input index `0`.
Differently from `sig(k) of T`

, the signature `sig(kA)`

is computed **lazily**,
when evaluating the transaction `T`.

### Signature Verification¶

The expression `versig(k1,...,kn; s1,...,sm)`

,
where the expressions `k1` … `kn` have type `pubkey`

and `s1` … `sm` have type `signature`

with `n <= m`,
evaluates `true`

if the given signatures are valid against the provided keys,
`false`

otherwise. The result type is `bool`

.

This expression can appear only within the script of a transaction output.

```
const kA = key:cVj2a2fp4rkykykQR65Bf9FKj7gzjY2QFyn7Kj5BwSmZvn2VQ8To
const kApub = kA.toPubkey
const kB = key:cRmmSTUUQvgJMCmC2dFTkY9R8K7g8uzXnkif6E1qopZvjzrg9oeD
transaction TA {
input = _
output = 10 BTC : fun(x) . versig(kApub; x)
}
transaction T {
input = TA@0 : sig(kA)
output = 10 BTC : fun(x) . x == 42
}
transaction T2 {
input = TA@0 : sig(kB) // WARNING: this input does not correctly spends TA@0
output = 10 BTC : fun(x) . x == 43
}
```

#### Multi-signature verification¶

The expression `versig(k1,...,kn; s1,...,sm)`

is called **m-of-n signature verification**,
since all the **m** signatures must be valid against the list of **n** public keys.

Its implementation is the same as Bitcoin: the function tries to verify the last signature with the last key. If they match, the verification proceeds to verify the previous signature in the sequence, otherwise it tries to verify the signature with the previous key (and the key that failed cannot be used anymore).

Since that a key that failed cannot be used anymore in the verification process (one shoot), the order of elements in these lists matters.

For example, consider a *2-of-3* signature scheme:

```
const kA = key:cRmmSTUUQvgJMCmC2dFTkY9R8K7g8uzXnkif6E1qopZvjzrg9oeD
const kB = key:cPoPXKtZJmyVVKMjhphzADUDM3x6aEetk8TFGfctyAtPYPkqufjv
const kC = key:cVu2WBV1AJsWWG61diDxCrvbuQ9Kk6y7qmoLktCCV5ssht3E3yhx
const kApub = kA.toPubkey
const kBpub = kB.toPubkey
const kCpub = kC.toPubkey
transaction T {
input = _
output = 1BTC: fun(x, y). versig(kApub, kBpub, kCpub; x, y)
}
```

The output script `versig(kApub, kBpub, kCpub; x, y)`

evaluates true
if `x` and `y` respect the keys order.

```
transaction T1 {
input = T : sig(kA) sig(kB) // OK
output = 1 BTC: fun(x) . x == 42
}
transaction T2 {
input = T : sig(kB) sig(kC) // OK
output = 1 BTC: fun(x) . x == 42
}
transaction T3 {
input = T : sig(kB) sig(kA) // WARNING: this input does not correctly spends T@0
output = 1 BTC: fun(x) . x == 42
}
transaction T4 {
input = T : sig(kC) sig(kB) // WARNING: this input does not correctly spends T@0
output = 1 BTC: fun(x) . x == 42
}
transaction T5 {
input = T : sig(kC) sig(kA) // WARNING: this input does not correctly spends T@0
output = 1 BTC: fun(x) . x == 42
}
```

## Time constraints¶

Time constraints are a special category of expression as:

- they can be used only within output scripts
- they stop the evaluation if not satisfied (similarly to an exception).

The main purpose of time constraints is to enforce the redeeming
transaction to be valid after a certain time in the future.
In fact, in order to redeem an output script with time constraints,
the redeeming transaction must declare the `timelock` field that satisfies them.

Time constraints can express an *absolute time* or a *relative* one.

### Absolute timelocks¶

Absolute timelock constraints allow an output script to specify the **absolute time**
that the redeeming transaction must satisfy.
That time can be either a **block number** or a **timestamp** (in seconds).

#### CheckBlock¶

The expression `checkBlock blockN : exp`

, where `blockN` has type `int`

and
`exp` has type *T*, evaluates `exp` if the redeeming transaction has
a block absolute timelock greater than `blockN`, fails otherwise. Its type is *T*.

Moreover, the Bitcoin specification imposes that `blockN < 500_000_000`.

```
const blockN = 500_000
transaction T {
input = _
output =
1 BTC: fun(x) . checkBlock blockN : x == 42
}
transaction T1 {
input = T: 42
output = 0: "test"
absLock = block blockN + 5
}
transaction T2 {
input = T: 42 // WARNING: time constraint not satisfied
output = 0: "test"
absLock = block blockN - 5
}
```

#### CheckDate¶

The expression `checkDate date : exp`

, where `date` has type `int`

and
`exp` has type *T*, evaluates `exp` if the redeeming transaction has
a block absolute timelock greater than `date`, fails otherwise. Its type is *T*.

Moreover, the Bitcoin specification imposes that `date >= 500_000_000` (or `1985-11-05 00:53:20`).

```
const deadline = 2019-01-01
transaction T {
input = _
output =
1 BTC: fun(x) . checkDate deadline : x == 42
}
transaction T1 {
input = T: 42
output = 0: "test"
absLock = date deadline + 1day
}
transaction T2 {
input = T: 42 // WARNING: time constraint not satisfied
output = 0: "test"
absLock = date deadline - 1day
}
```

### Relative timelocks¶

Relative timelock constraints allow an output script to specify the **delay**
that the redeeming transaction must satisfy.
That delay can be either a **block number** or a **time delay** (in seconds).

#### checkBlockDelay¶

The expression `checkBlockDelay blockN : exp`

, where `blockN` has type `int`

and
`exp` has type *T*, evaluates `exp` if the redeeming transaction has
a block relative timelock greater than `blockN`, fails otherwise. Its type is *T*.

Moreover, the Bitcoin specification imposes that `blockN < 65535`.

```
const blockDelay = 500
transaction T {
input = _
output = 1 BTC: fun(x) . checkBlockDelay blockDelay : x == 42
}
transaction T1 {
input = T: 42
output = 0: "test"
relLock = blockDelay + 5 block from T
}
transaction T2 {
input = T: 42 // WARNING: time constraint not satisfied
output = 0: "test"
relLock = blockDelay - 5 block from T
}
```

#### checkBlockDelay¶

The expression `checkTimeDelay seconds : exp`

, where `seconds` has type `int`

and
`exp` has type *T*, evaluates `exp` if the redeeming transaction has
a time relative timelock greater than `seconds`, fails otherwise. Its type is *T*.

Moreover, the Bitcoin specification imposes that seconds is a multiple of 512,
and that `seconds / 512 <= 65535`.

```
const timeDelay = 1day
transaction T {
input = _
output = 1 BTC: fun(x) . checkTimeDelay timeDelay : x == 42
}
transaction T1 {
input = T: 42
output = 0: "test"
relLock = timeDelay + 1h from T
}
transaction T2 {
input = T: 42 // WARNING: time constraint not satisfied
output = 0: "test"
relLock = timeDelay - 1h from T
}
```

## Transaction operations¶

### Input Value¶

The expression `T.input.value`

, where `T` is an expression
of type `transaction`

, returns the sum (type `int`

) of the output values that
`T` is redeeming.

If a transaction spends more than one output, the user can specify
which input consider as `T.input(i,j,...).value`

.

```
transaction coinbase1 {
input = _ // no input
output = 1000: fun(x) . x == 42
}
transaction coinbase2 {
input = _ // no input
output = 5000: fun(x) . x == 42
}
transaction T {
input = [
coinbase1: 42;
coinbase2: 42
]
output = 1000: fun(x) . x != 0
}
eval
T.input.value, // 6000
T.input(0,1).value, // 6000
T.input(0).value, // 1000
T.input(1).value // 5000
```

### Output Value¶

The expression `T.output.value`

, where `T` is an expression
of type `transaction`

, returns the sum (type `int`

) of the output values of
`T`.

If a transaction has more than one output, the user can specify
which output consider as `T.output(i,j,...).value`

.

```
transaction coinbase {
input = _ // no input
output = 5000: fun(x) . x == 42
}
transaction T {
input = coinbase: 42
output = [
3000: fun(x) . x != 0;
2000: fun(x) . x != 0
]
}
eval
T.output.value, // 5000
T.output(0,1).value, // 5000
T.output(0).value, // 3000
T.output(1).value // 2000
```

### Example: fees and reminders¶

The following example shows how the keyword `this`

can be used inside
a transaction to access its input or output value.

Remember that this refers to transaction in which it is used.
The benefit of using `this`

is that it simplifies handling transaction
fees and reminders. Consider the following example:

```
// Alice's public key
const pubA = pubkey:02249f0fb7e6f0ca9e0f329b24c65c2ad0f792c86856889605ca317aab2a822ffd
// Bob's public key
const pubB = pubkey:0349702eb78f809172dd5501c926d076f60358388ab8f297976d8bd8c7b54909da
// Miner's fee
const fee = 0.00013 BTC
transaction coinbase {
input = _ // no input
output = 10 BTC: fun(x) . x == 42
}
transaction T {
input = coinbase: 42
output = [
// pay 1 BTC to Bob
1 BTC: fun(x) . versig(pubB; x);
// take the remainder and reward the miner
this.input.value - 1 BTC - fee: fun(x) . versig(pubB; x);
]
}
```

Alice owns `10 BTC`

and she wants to send `1 BTC`

to Bob.
She creates a transaction `T` with two outputs: the first one pays
Bob; the second one gives Alice the remaining bitcoins back,
minus some fee that are left to the miner.

## Placeholders¶

Balzac features a way of expressing a default value for any of its types.
The *underscore* `_` can be used in situation in which we are not interested
in providing a value. For example, the signature computation of parametric transaction
which takes a signature as parameter, or an output scripts in which a parameter
is not used.

Consider the following example:

```
const k = key:cPGZo8VsEopkNFugJpzSaZFhwBVnajhsD5g4XzfcbhDp4VoLdgfw
const kpub = k.toPubkey
transaction Coinbase {
input = _
output = 1 BTC : fun(x,n) . versig(kpub;x) && n == 11
}
transaction T(s:signature, n:int) {
input = Coinbase: s n
output = this.input.value : fun(y, s:int) .
versig(kpub;y) ||
checkDate 2019-01-01 : sha256(s) == hash:684888c0ebb17f374298b65ee2807526c066094c701bcc7ebbe1c1095f494fc1
}
// compute a signature to redeem Coinbase
const s = sig(k) of T(_,_)
```

Transaction `T` is parametric: it takes a signature `s` and an integer `n`
and uses them as witnesses to redeem the transaction `Coinbase`.
In order to compute a valid `s`, we must instantiate `T` with its
actual parameters, otherwise the expression `sig(k) of T`

complains
with an error. Since `s` and `n` are witnesses in `T`,
their value does not affect the computation of the signature,
and it is convenient to use `_` to express that we don’t care what their value is.
Also, consider that the actual parameter for `s` is exactly the value
we want to compute.

The output script of `T` takes two parameter `y` and `s` respectively of
type `signature`

and `int`

. The script evaluates true
either providing a valid signature for `kpub`,
or providing a secret `s` after the date `2019-01-01`

whose `sha256`

is equal to
`hash:684888c0ebb17f374298b65ee2807526c066094c701bcc7ebbe1c1095f494fc1`

.

```
// redeem T(s) providing a valid signature
transaction T1 {
input = T(s,11) : sig(k) _
output = this.input.value : fun(x) . x == 42
}
// redeem T(s) providing the secret
transaction T2 {
input = T(s,11) : _ 42
output = this.input.value : fun(x) . x == 42
absLock = date 2019-01-01
}
```

Transactions `T1` and `T2` uses `_` to express the “unused” actual parameter.

References

[BW] | https://bitcoin.org/en/developer-guide#signature-hash-types |

[1] | (1, 2) https://bitcoin.org/en/glossary/wallet-import-format |